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The heat  transfer coeff ic ient  is found from the measured temperature  distribution over the surface of a 
tube. An ana ly t ica l  and a net method are examined in relat ion to the wall  of a tube with and without in-  
ternal heat  sources. 

A method has been developed [2] for determining the loca l  coeff icient  of heat  transfer between a tube and a cross 

flow of liquid from the temperatures measured on both faces of the annular cross section. In this method the local  coef -  
f icient  is given by 
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The temperature  gradient in (1) is determined from the temperature  field, which is found by integrat ing the d i g  

ferential  equation of heat  conduction for a given temperature  distribution at the 
boundaries of the section, 

Fig. 1. Cross section of tube. 

The average hea t  transfer coeff icient  over a portion of the tube from 0 to 
(Fig. I) is given by 
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a =  - -  a z O d ~ .  (2) 
qvO m 
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In the ana ly t ica l  method of reducing the exper imenta l  data, the temperature  
gradient is expressed as a slowly converging series, and i t  is therefore more conve- 
nient first to ca lcula te  the average heat transfer coeff ic ient  
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a ---- " -  d (p (3) 
OmqD r~ 

and then determine the local  coeff ic ient  graphical ly  or ana ly t ica l ly .  The series in terms of which the integral  in (3) is 
expressed converges considerable more rapidly than that for ca lcula t ing  the temperature  gradient. 

We will  now examine  the ana ly t ica l  method based on (3), and also a net method, in which the coeff ic ient  is de-  
termined from (1) and (2). 

In the ana ly t ica l  method, for tubes without internal  heat  release,  the integral  in (3) is determined with the aid of  
the different ial  equation 

Oat 1 Ot 1 O~t 
- - +  + - 0 ,  
Or s. r Or r 2 0 q~2 

whose solution must fit the boundary conditions 

t (r, q~) = t (r, q3 -k 2~:), 

t(r~, q9 = [(qo), t (r~, ~) = ~ (s). 

(4) 

(5) 

Solution of  (4) with boundary conditions (5) by the Fourier method yields 

t =  Ao + Bo ln r + [(Anr" q- Bnr -~) cos  n ~ + (6) 

+ (C,r n + Dnry") sin n r  
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w h e r e n = l ,  2, 3, ... 

The coefficients in (6) are determined from the temperature distribution over the tube surfaces: 

Ao = M o In r2 - -  No In/'1 B e  __ N o  - -  Mo 
21n (rdq)  ' 21n (rdrl) ' 

A .  - -  M~rT~ - -  NnrTn Nnr~ - -  Mnr~ 
- -  r~ r~ - n  - /. l n r n , B n  = . - r - "  r T - "  r'~ 2 f ?  2 - -  

* - - n  * * t~ * 
M n  r2 - -  N.  rT n Nn rl - -  Mn r'~ 

C n =  r~ r J . - -  rTn r~ " Dn = r'~ r~-" - r-fn r~ " 

Here 

(7) 
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0 0 
2~ 2= 

o o 
2= 2= 

M n  = ~ (qo) sin n q~ d % N. ~ (,:p) sin n tp d % 

0 0 

The integral in (3) is determined using (6): 

d ?  = qo + It .re - - B n r - ~ " - l ) s i n n ~ p - - t  nrz - -  n 2 )(COSnq I~-  1)]. 
r2 / ' 2  ' 

0 n = l  

(8) 

For a tube with heat release in the walls*, the differential equation has the form: 

O2~ ~-t - I - '  1 Ot + 1 02t + qv O. 

Or ~ r Or r 2 0 ~2 ), 
(9) 

I f  the output of the internal heat sources does not depend on temperature, then the substitution 

T = t + q" r2 
k 4 

(I0) 

reduces (9) to the same form as (4): 

02T 1 OT 1 O~T - - +  _ _  

O r  ~ r Or  - r 2 0 72 

The boundary conditions have the form 

T (r ,  q~) T (r, qo q- 2~r), 

m = O .  

X 4 

q .  = @ 
T = r. + 

(11) 

The integral of (11) coincides with (6), and the coefficients in it are determined from (7). In determining the pa- 
rameters M0, No, M n, N n, M~ and N~, the functions g(~) and ~(~) should be replaced by F(~) and ~(~).  

In this case the final formula for determining the integral in (3) has the form: 

*This type of problem arises in investigating heat transfer in the presence of a magnetic field or when the tube is 

heated by an electric current, 
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ature. 

F~ 
0 

r.. k -2 ~ § [(A.r~-' - -  B~r2~-~ ) s i n  n q9 - - -  

rt-~-I 

-- (Cnr~ -1 -- Dnr~ -n-l) (cos n ~ - -  1). (12) 

Equation (9) can also be solved if it is assumed that the output of the internal heat sources does depend on temper- 
In this case it may be written as 

O"t I at 1 O~t ~ + - - ~ +  
Or ~ r Or r ~ 0 q~ 

The substitution T : a + bt reduces it to the form: 

O~T 1 OT 1 O~T - - +  + 
Or ~ r Or r ~ 0 ~ 

Here the boundary conditions are 

~ - a + b t = O .  

~- bT = O. (13) 

T(r, q ~ ) : T ( r ,  q9 +2~) ,  

T(rl, q j - - - a + b ~ ( 9 ) = K ( q ~ ) ,  T(r~, ( ? ) = a + b S ( q ~ ) = L ( q J .  

The integral of (13), obtained by the Fourier method, has the form 
co 

T = AoJo(r]/-F) +BoY o ( r y b ) +  E {[AnJ~(r]/'5) + 
n~l (14) 

j-  B,% n (r I f  b)] cos n q~ + [CnJn (r ] / ~ )  -+- DnY ~ (r ~fb)] sin n ~ ] . 

The coefficients in (14) may be determined from the boundary conditions: 

Ao = ~ MoYo ( ~ / G )  - Noro ( ~ / b - )  
2 Jo ( / '1 /b-)  Yo ( / ' 2 / b )  - -  Jo ( f 2 / b )  Yo (fl < b )  

Bo _ 1 No:o (h ~/-E) - -  MoJ o @ 2 / b )  
2 Jo (r~ V-b-) Iio (r2 ]l-b) -- Jo (r2/6-) Yo (h ]flD 

An = Mn~rn.(/'2 Vb5  - -  NnYn (fl/b--) " 

Bn = NnJn @1/b) - -  M~Jn (r2 v;b-) 
J~ (r~Y/b-) Yn @21/-6) -- Jn(r21/5) Y~ (h}/-~ ' 

< (~ Vs) Yn (~ VG) - Jn (~ VF) Yn (~ VG) ' 

D~ : N;Jn (~1 V~) - M: Jn (~ V-E) 

In calculating the parameters M0, N 0, Mn, Nn, Mn, N~I from the equations examined above, K((p) and L(~o) 
should be used in place of ~(~o) and ~(r 

Using (14), we can find the parameter required to calculate a from (3): 

f ( Ot r~ dq~ -- ~--~l [AoJx(r~]f~)+ BoYl(ril/--~)] f~ + 

0 

_ f2 
(15) 

+ Bn n.if_r2 Yn @2 I/b-)  - -  Bn/bY~+l (r~ ~-~ ] sin n qD - -  
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-- D,,]/-bY,+~ (r~ i/-5) ] (cosn~--  l) }. 
(15) 

(cont 'd) 

The ana ly t ica l  method of reducing the exper imenta l  data allows the results to be obtained in the form a = f(~),  

but requires laborions calculations.  

A net method [1] may  also be used to solve the first two problems considered above; by this means the tempera-  
ture gradient at the tube surface may be ca lcula ted  using tabulamd coefficients.  

z~rf 

~# Art 8 g 

Fig. 2. Auxil iary contour for solving problems by the net method.  

Introducing the new var iables  u = r l  in (r/rl) and v - -  r l  q~ used in [3] into different ial  equation (4), we reduce it 

to the form 

a2t a2t 
- -  4 -  - -  0 .  ( 1 6 )  

au2 Ov ~ 

Solution of this equation by the net method enables one to find the gradient  ~/iM at the surface nodes of a re tan-  
gular contour (Fig. 2), 

k 

1_ (1,  
Ou m 

i=1  

where m is the length of the contour, equal  to 2~rr 1. 

Since 

Ot _ Ol O__U_Uan d Ou rl 
Or Ou Or Or r 

k 
Ot 1 rl ~-~ 

Biti. 
Or m r 

i =  1 

Therefore, on the outer surface of the tube 

. k 

-~r r~-- 2=r2 i=1 

When the annular contour is replaced by a rectangular  one, addi t ional  surfaces AD and CB (Fig. 2) appear; these 
correspond to one of the radia l  sections of  the tube. To ca lcula te  the temperature  gradient from (18), it  is necessary to 
know the temperature  distribution over the entire contour ABCD, including the surfaces AD and CB. However, there is 
no need to measure the temperature  distribution in any of  the radial  sections of  the tube. 

The problem of determining the heat  transfer coeff icient  at  the tube surface by the above method is of interest 

only when the coeff icient  varies with the angle  ~. Under these conditions the relations a = f ( ~ )  and tz = r  are char-  
ac ter ized  by at least two extrema.  Conditions a 1 ~ f ( ~ )  in which the ext reme values of the functions t 2 = r162 and t l  = 
= ~(e)  wiU coincide are easy to reproduce exper imenta l ly .  If we make the in i t ia l  radial  section e = 0 (Fig. 1) coincide 
with the section where the ext remum is observed, then the radial  temperature  distr ibution in this section is given by the 

formula for the one-dimensional  problem 

t l  - - -  t2 (19 )  
t = t l  - -  In (r/rl). 

In (r~/rl) 
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The need to obtain a square net on the rectangular contour ABCD limits the choice of dimensions for the experi- 
mental  tube. 

Since 

k v = 2= q / x a n d A  u = In  (GIG) rl/z, (20) 

the condition AV = Au enables us to obtain 

re 2~ z 
= e x p  ~ (21) 

r 1 x 

The network for determining the temperatures at the nodal points t i may be superimposed directly on a drawing of 
the tube cross section (Fig. t). 

Since 

Ar =, A v/r1 = A u/rl, 

by (20) for 4 0  we get: 

1 r2 
A~ = ~ In 

z r l  

The formulas for the radii r ' ,  r", etc. are obtained from the condition that the values of Au for adjacent sections 

are equal. Thus, at z = 3 

3 ~ /'" ] /  
l " =  Vrr~ri and = r e F  r~r~ . 

I /  

For a tube with heat release in the wall, when qv ;~ f( t) ,  it is also possible to solve the problem by the net meth-  

od. After the change of variables T = t -t qv r 2 , u = rl  In r _ _  and v ----- r l  q) , Eq. (9) becomes 
t, 4 Q 

02T/Ou 2 -~- 02T/Ov ~ = O. (22) 

In this case 

/ o r \  __ OT 3u qo r2 
~, Ou Or X 2 (23) 

Taking into account the equality 

we may write (23) in the form 

k 
dT 1 

- -  2 BiTi 
Ou m 

i=l  

r2 2~v ,~.~ X 2 
(24) 

The positiort of the nodes in relation to the cross section of the tube is found in the same way as in the previous 
problem. The value of the T i in (24) is determined at each node: 

T~ = t~. + q~ -2-~ r2 - -  , 
), 4 

The temperatures t i on the curved parts of the contour are determined by direct measurement or interpolation, a 
and on the straight part ~0 = 0 by calculat ion from (19). 

The average heat transfer coefficient is determined by graphical integration. 

NOTATION 

A0, B0, A n, B n, C n, D n - coefficients; B i - tabulated coefficient; i - ordinal number of surface node; J0, Jn' Y0, 
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Yn - Bessel functions; K - number of surface nodes; qv - internal heat source output; r,, r z - inside and outside tube 

radii; t I, tz - temperatures on inside and outside tube surfaces; T - function of t; u, v - variables depending on the co- 

ordinates; x, z - number of cells in net horizontally and vertically; C~l, c~ - local and average heat transfer coeffi- 

cients; O - temperature difference between surrounding medium and outside surface of tube; k - thermal conductivity of 

tube material; ~ - angular coordinate. 
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